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Bubble motion in a horizontal tube and the velocity estimate for curved flames

Vitaliy V. Bychkov
Department of Plasma Physics, Umea University, S-90187, Umea, Sweden

~Received 7 January 1997!

Propagation of a semi-infinite bubble in a horizontal tube is considered. The velocity of a stationary moving
bubble is calculated, which provides an estimate of the velocity of a flame front in a horizontal tube for the case
of strong influence of gravity.@S1063-651X~97!02406-9#

PACS number~s!: 47.55. Dz, 47.15. Hg, 82.40. Py
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Interest in the problems of bubbles rising in a gravi
tional field was stimulated for several decades mainly by
studies of the Rayleigh-Taylor instability in inertial fusio
@1–7#. Lately it has also been obtained that effects of bub
motion are of great importance for flame dynamics both
terrestrial and astrophysical conditions@8–12#. A flame front
propagating in a cold heavy fuel converts it to hot produ
of burning at low density, which tend to move upwards in
gravitational field. Usually the rising burnt matter forms
bubble, with the flame front as the surface of the bubb
Following from the dimensional analysis, the velocity of t
bubble motion depends upon the gravitational accelera
g and the bubble sizeD as AgD. For a sufficiently large
bubble size the bubble velocity may be much larger than
normal velocity of a planar flame front. In this case the v
locity of flame propagation is determined mostly by the gra
ity effects, and the flame front moves with the bubble velo
ity, as it happens, for example, for flames propagat
upwards in vertical tubes of a large diameterD@Uf

2/g, Uf

being the normal flame velocity@12#.
A similar effect was observed experimentally for flam

propagating in horizontal tubes@13#: the hot burnt gas tend
to occupy the upper part of the tube, while the heavy f
extends along the lower part. As a result the flame fr
acquires a curved shape and propagates stationary w
velocity exceeding the velocity of a planar flame by orders
magnitude. According to the experimental data the veloc
of a curved flame in a horizontal tube increases with the t
diameter asAD, just like a bubble velocity. Up to now flam
propagation in a horizontal channel has been studied th
retically only for the case of small differences in densities
the fuel and the burnt gas, a moderate gravity accelera
and a moderate tube width@14#. In the scope of these as
sumptions a flame front remains almost planar, and the
fects of gravity provide only small corrections to the flam
velocity. Obviously, the model of small expansion of t
burning matter ‘‘yields a poor extrapolation to the importa
limit of large acceleration’’@14#. In the limit of a large ac-
celeration the flame dynamics in a horizontal tube is do
nated by the effects of bubble motion. Therefore, in orde
estimate the velocity of the curved flame, one has to so
the problem of an inert semi-infinite bubble moving in
horizontal channel. Though the problem of the bubble m
tion does not include the process of burning and fuel c
sumption, it provides a very good approximation of the fla
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velocity for the case of a large accelerationgD/Uf
2@1. If

one considers a solution of the complete set of the equat
of flame dynamics in a strong gravitational field, then t
velocity of a massless bubble represents the principal term
the expansion of the flame velocity into a power series of
small parameterUf

2/gD!1 for the typical laboratory case
where the fuel density considerably exceeds the density
the burning products@12,15#.

In the present paper we consider propagation of a m
less semi-infinite bubble in a horizontal tube filled by
incompressible fluid. The velocity of the stationary movin
bubble is calculated, which provides an estimate of the fla
velocity in a horizontal tube for the case of the strong infl
ence of gravity.

Let us consider a stationary flow caused by a semi-infin
bubble propagating in a horizontal channel of widthD, as is
shown schematically in Fig. 1. It follows from dimension
considerations that the bubble moves with the veloc
U5FAgD; our purpose is to find the coefficientF. In the
reference frame of the bubble (x50, y50 being the top of
the bubble! the fluid at infinity flows toward the bubble with
the velocityU, rounds the bubble and forms a thin jet
width d. The velocity of the fluid in the jet isU`5U/a,
wherea5d/D. At the surface of a massless bubble the B
noulli’s equation takes the form

1
2v

21gy50, ~1!

so that the velocity of the fluid in the jet may also be calc
lated as

FIG. 1. The configuration of a bubble in a two-dimension
horizontal tube.
6898 © 1997 The American Physical Society
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U`5A2g~D2d!5U
A2
F

A12a. ~2!

Equation~2! couples the dimensionless coefficientF to the
ratio of the jet width and the tube width,

1
2 F25a2~12a!. ~3!

Since there are no sources of vorticity, the flow is pote
tial everywhere. Close to the top of the bubble the veloc
potential and the stream function may be written in po
coordinates in the following form@16#:

w5Nrncos„n~Q1a!…, c5Nrnsin„n~Q1a!…,

n5
p

p2a
, ~4!

with the velocity components

v r5nNrn21cos„n~Q1a!…,

vQ52nNrn21sin„n~Q1a!…. ~5!

Substituting the velocities into the Bernoulli’s equation, w
obtain the equation for the coefficientN and the power ex-
ponentn:

1
2n

2N2r 2n225gr sina, ~6!

so that

n5
3

2
, a5

p

3
, N25

4A3
9

g. ~7!

Then the complex potentialf5w1 ic at the bubble top be
comes

f5UD
2A4 3
3F S zD D 3/2expS i p

2 D , ~8!

wherez5x1 iy . An interesting point is that a horizontall
propagating bubble touches the wall at a sharp an
a5p/3, while the bubbles rising upwards always have a
top.

In order to obtain the bubble velocity~i.e. the coefficient
F) we have to find the solution of the Laplace equati
Df50 for the whole flow, with the boundary conditions
the walls and the bubble surface. This is a very complica
mathematical problem which has not been solved yet eve
the theory of bubbles rising upwards in spite of many
tempts@1,5–7#. Instead we use a technique of approxima
solution which proved to be a success in the theory of ris
bubbles. According to this method one constructs an
proximate solution reflecting the most important propert
of the flow, and matches this solution with the solution at
bubble top, as has been done for spherical bubbles@5#, cy-
lindrical open bubbles@6#, and plane open bubbles@7#.

We introduce the dimensionless variablesu5ux1 iuy
5(vx1 ivy)/U, z5j1 ih5z/D, andF5f/UD, so that the
dimensionless complex potential at the top of the bub
takes the form
-
y
r

le
t

d
in
-
e
g
p-
s
e

e

F5
2A4 3
3F

z3/2expS i p

2 D . ~9!

The important features of the flow under consideration
that the fluid moves from infinity with the dimensionles
velocity u51, rounds the bubble top of an anglea5p/3,
and forms a jet with the dimensionless velocityu51/a. A
typical hodograph of such a flow is shown in Fig. 2 with th
pointsA, B, andC corresponding to the incoming flow, t
the bubble top and to the outgoing jet, respectively. A flo
like that shown in Fig. 2 may be obtained from the flow
Fig. 3 by the linear conformal transformation

FIG. 2. The hodograph of a flow caused by a horizontally mo
ing bubble. PointsA, B, andC correspond to the uniform flow fa
ahead of the bubble, to the bubble top, and to the jet, respectiv

FIG. 3. A flow caused by three symmetrically placed sourc
PointsA, B, andC correspond to the uniform flow far ahead of th
bubble, to the bubble top, and to the jet according to the trans
mation Eq.~10!.
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u5
w

aw112a
, ~10!

so that the pointsw51, w50, andw5` correspond to the
pointsu51, 0, and 1/a, respectively. The flow in Fig. 3 is
produced by three sources placed symmetrically in the po
w51, w521/21(A3/2)i , andw521/22(A3/2)i and the
complex potential of the flow has the form

F5
1

p
lnuw21u1

1

p
lnUw1

1

2
2

A3
2
iU1 1

p
lnUw1

1

2
1

A3
2
iU

5
1

p
lnuw321u. ~11!

The strength 2 of the sources is chosen in order to satisfy
boundary conditions in the incoming flow: it provides th
unit mass flux for the flow marked by white in Fig. 3. By th
definition, the complex velocity is the derivative of the com
plex potentialu5dF/dz, therefore it follows from Eq.~11!
that

u5
3

p

w2

w321

dw

dz
. ~12!

Taking into account Eq.~10!, we obtain a differential equa
tion for the variablew,

1

aw112a
5
3

p

w

w321

dw

dz
. ~13!

Though Eq.~13! may be integrated in terms of standard an
lytical functions, the result is rather complicated. At the sa
time we are interested only in the complex potential at
bubble top B (z50), whereu→0, w→0 . Close to the
bubble top, Eq.~13! is reduced to the equation

1

12a
52

3

p
w
dw

dz
, ~14!

so that the variablew, the velocity, and the complex poten
tial at the bubble top are

w252
2p

3

z

12a
, ~15!

u5
1

~12a!3/2 S 2p

3
z D 1/2expS i p

2 D , ~16!

F5
2

3S 2p

3 D 1/2 z3/2

~12a!3/2
expS i p

2 D . ~17!

Comparing Eqs.~17! and~9!, we obtain the second equatio
relating the dimensionless parametersF anda,

F25
3A3
2p

~12a!3. ~18!
ts

he

-
e
e

From Eqs.~3! and ~18!, one finds the equation for the pa
rametera,

3A3
2p

~12a!252a2, ~19!

and calculatesa'0.391 andF'0.43. Thus a bubble in a
horizontal two-dimensional channel of widthD propagates
with the velocityU'0.43AgD. The same velocity is ex-
pected for a flame in a horizontal two-dimensional tube
the case of sufficiently wide tubesD@5.4Uf

2/g. The above
estimate of the flame velocity and the coefficientF is smaller
than the estimateF51/A2 which follows from Eq.~6.3! of
@14#. At the same time a curved flame front does not rep
duce all features of the bubble shape. For example, the s
infinite jet shown in Fig. 1 is impossible for a flame fron
because of the ‘‘fire-polishing effect’’: flame consumes t
cold fuel in the jet.

The obtained velocity of a horizontally moving bubble
quite close to the velocity of open bubbles rising upwards
ideal two-dimensional vertical tubesF1AgD, F150.3–0.4
@1#. Thus, similar to the case of vertical tubes, the dimensi
less coefficientF is rather small, which implies a weake
influence of gravity on flame dynamics than is generally b
lieved @8#. The gravity effects become especially importa
for slow flames like a flame in a mixture 6% CH4 with the
normal velocityUf55 cm/s@16#. For such a flame the con
dition D@5.4Uf

2/g'0.13 cm is satisfied for any reasonab
laboratory installation and the velocity of flame propagati
is always determined by the effects of bubble motion. I
flame has a larger normal velocity, then the gravity effe
become important for wider tubes. For example, the flame
the mixture 10% CH4 propagates normally with the velocit
Uf543 cm/s typical of the laboratory flames, and for such
flame the bubble velocity is equal to the normal flame vel
ity for the tube width 5.4Uf

2/g'10 cm. The experiments@13#
show that in a wide horizontal tubeD590 cm, the curved
flame in the mixture 10% CH4 propagates with the velocity
Uw5245 cm/s, considerably exceeding the normal veloc
of the flame. The theoretical analysis of the present pa
predicts the bubble velocityU'130 cm/s for a two-
dimensional tube of this width. The difference between
theoretical and experimental results is presumably cause
the well-pronounced three-dimensional nature of the exp
mental flow. If we suppose that a three-dimensional bub
moves approximately 1.5 times faster than a tw
dimensional one~as takes place for bubbles in vertical tub
@1#!, then we obtain the flame velocityU'200 cm/s which is
only slightly lower than the experimental resultUw'245
cm/s. It is quite natural that the bubble velocity somewh
underestimates the velocity of a gravity-influenced curv
flame: the joint effect of the bubble motion and the fu
consumption by the flame front provides a larger flame
locity compared to the velocity of an inert bubble. An add
tional increase of the flame front velocity may be caused
the Landau-Darrieus hydrodynamic instability inherent
any gaseous flame@16#.

Another interesting feature of a flame front in a horizon
tube is the sharp anglea'p/3 at the top of the flame front
which is seen in the snapshot photographs@13#, in agreement
with the present theoretical results. The sharp angle can
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clearly distinguished on the bright part of the flame fro
where effects of thermal conduction and losses to the w
do not influence the flame structure.
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