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Bubble motion in a horizontal tube and the velocity estimate for curved flames
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Propagation of a semi-infinite bubble in a horizontal tube is considered. The velocity of a stationary moving
bubble is calculated, which provides an estimate of the velocity of a flame front in a horizontal tube for the case
of strong influence of gravity.S1063-651X97)02406-9

PACS numbdrs): 47.55. Dz, 47.15. Hg, 82.40. Py

Interest in the problems of bubbles rising in a gravita-velocity for the case of a large acceleratig/UfZ> 1.1f
tional field was stimulated for several decades mainly by thene considers a solution of the complete set of the equations
studies of the Rayleigh-Taylor instability in inertial fusion of flame dynamics in a strong gravitational field, then the
[1-7]. Lately it has also been obtained that effects of bubblevelocity of a massless bubble represents the principal term of
motion are of great importance for flame dynamics both inthe expansion of the flame velocity into a power series of the
terrestrial and astrophysical conditiof@-17. A flame front ~ small parametetJ?/gD<1 for the typical laboratory case
propagating in a cold heavy fuel converts it to hot productsvhere the fuel density considerably exceeds the density of
of burning at low density, which tend to move upwards in athe burning product§l2,15.
gravitational field. Usually the rising burnt matter forms a  In the present paper we consider propagation of a mass-
bubble, with the flame front as the surface of the bubbleless semi-infinite bubble in a horizontal tube filled by an
Following from the dimensional analysis, the velocity of the incompressible fluid. The velocity of the stationary moving
bubble motion depends upon the gravitational acceleratioRubble is calculated, which provides an estimate of the flame

g and the bubble siz® as \gD. For a sufficiently large velocity in a horizontal tube for the case of the strong influ-

bubble size the bubble velocity may be much larger than th&Nce of gravity. . S
normal velocity of a planar flame front. In this case the ve- Let us consider a stationary flow caused by a semi-infinite

. o : bubble propagating in a horizontal channel of wi@ithas is
locity of flame propagation is determined mostly by the 9raV=gpown schematically in Fig. 1. It follows from dimensional

ity effects, and the flame front moves with the bubble Veloc'considerations that the bubble moves with the velocity

ity, as it happens, for example, for flames propagatin%:F\/g—D_ our purpose is to find the coefficieft. In the

upwards in vertical tubes of a large diame®®Uf/g, Ut eference frame of the bubbl&£0, y=0 being the top of

being the normal flame velociff2]. the bubbl the fluid at infinity flows toward the bubble with
A similar effect was observed experimentally for flamesihe velocity U, rounds the bubble and forms a thin jet of

propagating in horizontal tubg¢43]: the hot burnt gas tends width d. The velocity of the fluid in the jet i), =U/a,

to occupy the upper part of the tube, while the heavy fuelyherea=d/D. At the surface of a massless bubble the Ber-

extends along the lower part. As a result the flame fronfoulli's equation takes the form

acquires a curved shape and propagates stationary with a

velocity exceeding the velocity of a planar flame by orders of

magnitude. According to the experimental data the velocity $v2+gy=0, (1)

of a curved flame in a horizontal tube increases with the tube

diameter as/D, just like a bubble velocity. Up to now flame

propagation in a horizontal channel has been studied the

retically only for the case of small differences in densities of

the fuel and the burnt gas, a moderate gravity acceleration,

and a moderate tube widfli4]. In the scope of these as- y

sumptions a flame front remains almost planar, and the ef- T

fects of gravity provide only small corrections to the flame

velocity. Obviously, the model of small expansion of the

burning matter “yields a poor extrapolation to the important

limit of large acceleration’T14]. In the limit of a large ac-

celeration the flame dynamics in a horizontal tube is domi-

nated by the effects of bubble motion. Therefore, in order to

estimate the velocity of the curved flame, one has to solve U. ‘dI C

the problem of an inert semi-infinite bubble moving in a [

horizontal channel. Though the problem of the bubble mo-

tion does not include the process of burning and fuel con- FIG. 1. The configuration of a bubble in a two-dimensional

sumption, it provides a very good approximation of the flamehorizontal tube.

0 that the velocity of the fluid in the jet may also be calcu-
ated as
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N2
U.=\2g(D-d)=U = VI-a (2) e
Equation(2) couples the dimensionless coefficigntto the B 1 1/a u
ratio of the jet width and the tube width, - \ I
L F?=a2(1-a). ) o (A C
Since there are no sources of vorticity, the flow is poten-
tial everywhere. Close to the top of the bubble the velocity
potential and the stream function may be written in polar
coordinates in the following forr16]:
e=Nr"codn(®+a)), ¢=Nr"sin(n(O+ «a)),
n= . (4) FIG. 2. The hodograph of a flow caused by a horizontally mov-
T—a’ ing bubble. Point#\, B, andC correspond to the uniform flow far

) . ahead of the bubble, to the bubble top, and to the jet, respectively.
with the velocity components

. 243
v,=nNr""lcogn(® + a)), b= 53’2exp< 5| 9

3F

=—nNr""1sin(n(® + a)). 5 . . .
(n( @)) © The important features of the flow under consideration are
Substituting the velocities into the Bernoulli’s equation, wethat the fluid moves from infinity with the dimensionless

obtain the equation for the coefficieNt and the power ex- Velocity u=1, rounds the bubble top of an angie=7/3,
ponentn: and forms a jet with the dimensionless velocity- 1/a. A

typical hodograph of such a flow is shown in Fig. 2 with the
1n2N?r2"2=gr sina, (6) pointsA, B, andC corresponding to the incoming flow, to
the bubble top and to the outgoing jet, respectively. A flow
so that like that shown in Fig. 2 may be obtained from the flow in
Fig. 3 by the linear conformal transformation
T 2_4\/§

3
I"IZE, a=§, N —Tg (7)

Then the complex potentiab= ¢ +i ¢ at the bubble top be-

comes
4{/— 3/2 K
$»=UD 3F (5) ex;<|§), (8)

wherez=x+iy. An interesting point is that a horizontally
propagating bubble touches the wall at a sharp angle
a= /3, while the bubbles rising upwards always have a flat
top.

In order to obtain the bubble velocity.e. the coefficient
F) we have to find the solution of the Laplace equation
A =0 for the whole flow, with the boundary conditions at
the walls and the bubble surface. This is a very complicatec
mathematical problem which has not been solved yet even i
the theory of bubbles rising upwards in spite of many at-
tempts[1,5-7. Instead we use a technique of approximate
solution which proved to be a success in the theory of rising
bubbles. According to this method one constructs an ap
proximate solution reflecting the most important properties
of the flow, and matches this solution with the solution at the
bubble top, as has been done for spherical bubldgscy-
lindrical open bubble$§6], and plane open bubbl¢g].

We introduce the dimensionless variablas-u,+iu, FIG. 3. A flow caused by three symmetrically placed sources.
=(vxtivy)/U, {=¢+in=2/D, and®=¢/UD, so thatthe  PpointsA, B, andC correspond to the uniform flow far ahead of the
dimensionless complex potential at the top of the bubbléubble, to the bubble top, and to the jet according to the transfor-
takes the form mation Eq.(10).
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w From Egs.(3) and (18), one finds the equation for the pa-
v g (100 rametera,
. 33
so that the pointsv=1, w=0, andw=2 correspond to the 2—(1—a)2=2a2, (19
w

pointsu=1, 0, and 14, respectively. The flow in Fig. 3 is
produced by three sources placed symmetrically in the pointg,q calculatesai~0.391 andF~0.43. Thus a bubble in a
w=1, w=—1/2+(y/3/2)i , andw=—1/2—(3/2)i and the  porizontal two-dimensional channel of widi propagates

complex potential of the flow has the form with the velocity U~0.43,/gD. The same velocity is ex-
pected for a flame in a horizontal two-dimensional tube in

the case of sufficiently wide tubd3> 5.4U,?/g. The above

estimate of the flame velocity and the coefficienis smaller

than the estimat& = 1/y/2 which follows from Eq.(6.3 of

_ iln|w3—1| (11) [14]. At the same time a curved flame front does not repro-

T ’ duce all features of the bubble shape. For example, the semi-

infinite jet shown in Fig. 1 is impossible for a flame front

The strength 2 of the sources is chosen in order to satisfy theecause of the “fire-polishing effect”: flame consumes the

boundary conditions in the incoming flow: it provides the cold fuel in the jet.

unit mass flux for the flow marked by white in Fig. 3. By the  The obtained velocity of a horizontally moving bubble is

definition, the complex velocity is the derivative of the com- quite close to the velocity of open bubbles rising upwards in

plex potentialu=d®d/d{, therefore it follows from Eq(11)  jdeal two-dimensional vertical tubes,/gD, F;=0.3—0.4

o=t 1+ 1 138, | L, 33
—;n|w— |+;nw+§—7| +—Injwt 5+ =i

that [1]. Thus, similar to the case of vertical tubes, the dimension-
less coefficient~ is rather small, which implies a weaker

3 w? dw influence of gravity on flame dynamics than is generally be-

T awi—1 ac 12 jieved [8]. The gravity effects become especially important

for slow flames like a flame in a mixture 6% GMhith the
Taking into account E(10), we obtain a differential equa- Nnormal velocityU;=5 cm/s[16]. For such a flame the con-

tion for the variablew, dition D>5.4Uf2/g%0.13 cm is satisfied for any reasonable
laboratory installation and the velocity of flame propagation
1 3 w dw is always determined by the effects of bubble motion. If a

(13)  flame has a larger normal velocity, then the gravity effects
become important for wider tubes. For example, the flame in

. : ‘the mixture 10% Clg propagates normally with the velocity
Though Eq.(13) may be integrated in terms of standard ana U;=43 cm/s typical of the laboratory flames, and for such a

Iytical functio_ns, the resultis r_ather complicated. At the SaM& ame the bubble velocity is equal to the normal flame veloc-
time we are interested only in the complex potential at the

bubble top B ¢=0), whereu—0, w—0 . Close to the ity for the tube width 5.9?/g~10 cm. The experimen{43]
bubble top, Eq(13) is’ reduced to t,he equa'tion show that in a wide horizontal tub@=90 cm, the curved

flame in the mixture 10% CHpropagates with the velocity
1 3 dw U,=245 cm/s, consideral_aly exceedi_ng the normal velocity
= Tw—, (14) of the flame. The theoretical analysis of the present paper
l-a m o dg predicts the bubble velocityy~130 cm/s for a two-
) ) dimensional tube of this width. The difference between the
so that the variablev, the velocity, and the complex poten- theoretical and experimental results is presumably caused by

awtl-a w7wi—1d¢

tial at the bubble top are the well-pronounced three-dimensional nature of the experi-
mental flow. If we suppose that a three-dimensional bubble
) 27 ¢ moves approximately 1.5 times faster than a two-
W= 1y (15 dimensional ondas takes place for bubbles in vertical tubes
[1]), then we obtain the flame velocity~ 200 cm/s which is
1 o |12 onl>/ s:itg_htly Igwer tthar|1 tthhet tehxp%rirk?slntal Ires_illJJtW~ 245 o
u= =2 expi=|, (16 ~ cm/s. Itis quite natural that the bubble velocity somewha
(1-a)* ( 3 g) p( 2) underestimates the velocity of a gravity-influenced curved

flame: the joint effect of the bubble motion and the fuel
2(2m\ 12 82 K consumption by the flame front provides a larger flame ve-
= §(?) mexp( ' E)' (17)  locity compared to the velocity of an inert bubble. An addi-
tional increase of the flame front velocity may be caused by
the Landau-Darrieus hydrodynamic instability inherent to
any gaseous flame 6].

Another interesting feature of a flame front in a horizontal
tube is the sharp angle~ /3 at the top of the flame front,
which is seen in the snapshot photografd#, in agreement
with the present theoretical results. The sharp angle can be-

Comparing Eqgs(17) and(9), we obtain the second equation
relating the dimensionless parametéranda,

,_3\3

F 2

(1-a)d (18)
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clearly distinguished on the bright part of the flame front,National Board for Industrial and Technical Development
where effects of thermal conduction and losses to the wallsNUTEK), Grant No. P2204-2, by the Swedish Natural Sci-

do not influence the flame structure.
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